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Introduction: Central sensitization accounts for chronic ‘unexplained’ pain in

a wide variety of disorders, including chronic whiplash-associated disorders,

temporomandibular disorders, chronic low back pain, osteoarthritis, fibromy-

algia, chronic fatigue syndrome and chronic tension-type headache among

others. Given the increasing evidence supporting the clinical significance of

central sensitization in those with unexplained chronic pain, the awareness

is growing that central sensitization should be a treatment target in

these patients.

Areas covered: This article provides an overview of the treatment options

available for desensitizing the CNS in patients with chronic pain due to central

sensitization. It focuses on those strategies that specifically target pathophys-

iological mechanisms known to be involved in central sensitization. In addi-

tion, pharmacological options, rehabilitation and neurotechnology options

are discussed.

Expert opinion: Acetaminophen, serotonin-reuptake inhibitor drugs, selective

and balanced serototin and norepinephrine-reuptake inhibitor drugs, the

serotonin precursor tryptophan, opioids, N-methyl-D-aspartate (NMDA)-

receptor antagonists, calcium-channel alpha(2)delta (a2d) ligands, transcra-

nial magnetic stimulation, transcutaneous electric nerve stimulation (TENS),

manual therapy and stress management each target central pain processing

mechanisms in animals that -- theoretically -- desensitize the CNS in humans.

To provide a comprehensive treatment for ‘unexplained’ chronic pain disor-

ders characterized by central sensitization, it is advocated to combine

the best evidence available with treatment modalities known to target

central sensitization.

Keywords: chronic pain, electrotherapy, fibromyalgia, manual therapy, osteoarthritis,

pharmacotherapy, rehabilitation, whiplash
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1. Introduction

Despite extensive global research efforts, ‘unexplained’ chronic pain remains a
challenging issue for clinicians and an emerging socioeconomic problem. It is
present in many patients, including those with fibromyalgia [1], chronic
whiplash [2], chronic low back pain [3], osteoarthritis [4], headache [5] and chronic
fatigue syndrome [6]. An increasing amount of scientific evidence indicates that
central sensitization -- defined as an augmentation of the responsiveness of central
neurons to input from unimodal and polymodal receptors [7] -- accounts for
chronic ‘unexplained’ pain in the majority of these patients [1,2,8-13].
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Central sensitization encompasses altered sensory process-
ing in the brain [14], malfunctioning of descending antinoci-
ceptive mechanisms [6], increased activity of pain facilitatory
pathways and temporal summation of second pain or wind-
up [14,15]. In addition, the pain neuromatrix is overactive in
cases of central sensitization and chronic pain: increased activ-
ity is present in brain areas known to be involved in acute pain
sensations, such as the insula, anterior cingulate cortex and
the prefrontal cortex, but not in the primary or secondary
somatosensory cortex [16]. An overactive pain neuromatrix
also entails brain activity in regions not involved in acute
pain sensations: various brainstem nuclei, the dorsolateral
frontal cortex and the parietal associated cortex [16]. Long-
term potentiation of neuronal synapses in the anterior cingu-
late cortex [17] and decreased gamma-aminobutyric acid
(GABA) neurotransmission [18] are two other mechanisms
contributing to the overactive brain neuromatrix.
Besides top-down mechanisms included in the pathophysi-

ology of central sensitization, it is important to realize that
there are also bottom-up mechanisms. For example, periph-
eral injury and other kinds of stressor (e.g., infections) trigger
the release of the pro-inflammatory cytokines and consequent
activation of spinal cord glia with cyclooxygenase-2 and pros-
taglandin E2 expression in the CNS [19-22]. The outcome of
the processes involved in central sensitization is an increased
responsiveness to a variety of stimuli including mechanical
pressure, chemical substances, light, sound, cold, heat and
electrical stimuli. The increased sensitivity to variable stimuli
results in a decreased load tolerance. Further details address-
ing the pathophysiology of central sensitization are explained
below, together with the potential therapeutic options. For

comprehensive reviews on central sensitization, the interested
readers are referred to other manuscripts [1,23,24].

Central sensitization accounts for chronic ‘unexplained’
pain in a wide variety of disorders, including chronic
whiplash-associated disorders [2,25], temporomandibular
disorders [26-28], chronic low back pain [3], osteoarthritis [4],
fibromyalgia [1], chronic fatigue syndrome [6,29] and chronic
tension-type headache [5,30] among others. In addition, rheu-
matoid arthritis and migraine show features of central sensi-
tization [31-33] but cannot be categorized as ‘unexplained’
pain disorders. Local musculoskeletal disorders -- such as
shoulder impingement syndrome [34], myofascial trigger
points [35] and lateral epicondylalgia [36] -- show features of
segmental sensitization rather than widespread senstization.
Although clinical guidelines for the recognition and assess-
ment of central sensitization in pain patients have been
provided [9], an international consensus definition or clinical
criteria for central sensitization are essentially lacking. It
should be noted that the present review focuses on
‘unexplained’ chronic pain disorders that do not fit the
diagnostic criteria for neuropathic pain [37]. Hence, chronic
‘unexplained’ pain is defined here as non-neuropathic
chronic pain due to central sensitization.

Given the increasing evidence supporting the clinical signif-
icance of central sensitization in those with chronic unexplained
chronic pain [11,12,13], awareness is growing that central sensiti-
zation should be a treatment target in these patients [1,2,8,10,38].
However, little agreement regarding the treatment of central
sensitization in those with unexplained chronic pain currently
exists. Therefore, the present article provides an overview of
the treatment options available for desensitizing the CNS in
patients with chronic pain due to central sensitization. In this
respect, it is important for the reader to realize that studies
examining the effects of pharmacotherapy and other treatments
on central sensitization are mainly animal studies’ little is
known about the effect of pharmacotherapy or any other treat-
ment strategy on the mechanism of central sensitization in
humans. However, a body of scientific literature in support of
the clinical effectiveness of various pharmacological and
non-pharmacological treatments in a variety of chronic pain
disorders, characterized by central sensitization, is currently
available. Whether these clinical improvements accompany
amelioration of central sensitization remains to be established.
The present review focuses on those strategies that specifically
target pathophysiological mechanisms known to be involved
in central sensitization. Besides mainly addressing pharmaco-
logical options, rehabilitation and neurotechnology options
are discussed as well.

2. Pharmacotherapy potentially targeting
central sensitization

Pharmacological agents such ase non-steroidal anti-
inflammatory drugs and coxibs have peripheral effects, and
are therefore inappropriate for the treatment of central

Article highlights.

. The awareness is growing that central sensitization
should be a treatment target in patients with chronic
pain due to central sensitization (e.g., chronic whiplash
associated disorders, temporomandibular disorders,
chronic low back pain, osteoarthritis, fibromyalgia,
chronic fatigue syndrome and chronic tension-type
headache).

. Little is known about the effect of pharmacotherapy
and other treatment strategies on the mechanism of
central sensitization in humans.

. Various pharmacological and non-pharmacological
treatments, with established clinical effectiveness in a
variety of ‘unexplained’ chronic pain disorders, target
mechanisms involved in central sensitization.

. A variety of drugs target those central pain-processing
mechanisms in animals that, in humans, desensitize
the CNS.

. Likewise, transcranial magnetic stimulation,
transcutaneous electrical nerve stimulation, hands-on
manual therapy, and stress management programs each
target aspects of central sensitization.

This box summarizes key points contained in the article.
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sensitization in patients with chronic pain [39]. However, in
cases of hypersensitivity of central pain pathways, relatively
minor injuries/trauma at any location are likely to sustain
the process of central sensitization [1]. The analgesic effect
of NSAIDs has traditionally been related to the inhibition
of peripheral prostaglandin synthesis. In addition, a central
action has been suggested. It is proposed that NSAIDs
reduce hyperalgesia by peripheral and central mechanisms
of action [40]. The peripheral mechanism would be of anti-
inflammatory nature, which in turn attenuates sensitization
of peripheral nociceptors, attenuates afferent nociceptive
activity and thereby attenuates C-fibre-mediated central sensi-
tization. Central effects are expected to reduce progressive
tactile hypersensitivity (i.e., hyperresponsiveness to tactile
stimuli), whereas the peripheral aspects of NSAIDs are
expected to reduce central hyperexcitability [40]. For example,
a single oral dose of ibuprofen inhibits progressive tactile
hypersensitivity without reducing C-fibre-induced central
sensitization by a predominant central mechanism [40]. Hence,
peripherally acting anti-inflammatory drugs may be useful in
shutting down peripheral sources of nociceptive input towards
the CNS. However, they are unable to ‘treat’ the mechanism
of central sensitization directly.

Several centrally acting drugs specifically target processes
known to be involved in central sensitization. We aim to
explain how current drugs employed in the treatment of
chronic pain states interact with these processes, including
the interaction of N-methyl-D-aspartate (NMDA)-receptor
blockers such as ketamine; opioids; tricyclic antidepressants
(TCAs), such as amytryptiline; selective serotonin-reuptake
inhibitors (SSRIs) and selective noradrenaline-reuptake inhib-
itors (SNRIs) with descending pathways that link the brain
with the modulation and enhancement of pain. The ability
of drugs such as gabapentin/pregabalin to alter excitability is
also discussed. It should also be remembered that these drugs,
in particular antidepressants, might have a significant supra-
spinal mechanism of action that might act on the significant
psychological component of pain perception, and thus allow
patients to better cope with their pain [41]. These pharmaco-
logical agents are discussed below in view of treating central
sensitization in those with chronic unexplained pain. It is
important that the reader realizes that we do not intend to
provide clinical guidelines for the treatment of central sensiti-
zation. This would be impossible given the limited scientific
data available. Instead, an overview of treatment strategies
known to interfere with mechanisms involved in central sensi-
tization is presented. Hence, important issues like side effects,
numbers needed to treat and numbers needed to harm are not
addressed here.

2.1 Acetaminophen
Activation of the periaqueductal gray matter activates
descending seretonergic and noradrenergic neurons that
activate the rostral ventromedial medulla and the dorsolateral
pons, respectively [42]. These brainstem centers provide

powerful inhibitory action on nociceptive input at the spinal
segmental level. Activation of descending nociceptive inhibi-
tion reduces nociceptive input to the CNS. Acetaminophen
(paracetamol) improves peak exercise performance in healthy
athletes [43]. Acetaminophen primarily acts centrally: it rein-
forces descending inhibitory pathways [44], namely the seroto-
nergic descending pain pathways. In addition, acetaminophen
may exert an inhibitory action on the enzyme cyclooxy-
genase in the CNS [45], involved in the transformation of
arachnidonic acid to prostaglandins. Cyclooxygenase-2 and
prostaglandin E2 expression in the CNS takes part of the
mechanism of central sensitization in those with chronic
pain [19,20]. Hence, in addition to its effects on descending
antinociceptive pathways, its cyclooxygenase-inhibitory action
might well also contribute to decreasing the hypersensitivity
of the CNS.

2.2 Serotonin- and norepinephrine-reuptake

inhibitors
In line with the reasoning explained for acetaminophen is the
use of serotonin-reuptake inhibitor drugs, which activate
serotonergic descending pathways that recruit, in part, opioid
peptide-containing interneurons in the dorsal horn [46]. Rela-
tively selective serotonin-reuptake inhibitors, like fluoxetine
and clomipramine, and the serotonin precursor tryptophan,
prevent stress-induced hyperalgesia in animals [47]. SNRI
drugs activate noradrenergic descending pathways together
with serotonergic pathways [48]. This dual control of the spinal
cord by monoamine systems in the brain, whereby serotonin
appears to enhance spinal processing and norepinephrine
acts to inhibit activity, might be one way in which the brain
can alter pain processing and may be the route by which sleep,
anxiety, coping, and catastrophizing can impact on the level
of pain perceived. In this context, the use of antidepressants
to control pain relates to activity in these systems. Agents
that block the reuptake of either or both of these neurotrans-
mitters, such as tricyclic antidepressants (TCAs), SSRIs, and
SNRIs provide benefit in the treatment of pain. Antidepres-
sants are used to increase either serotonin or norepineph-
rine-mediated neurotransmission, or both. Humans studies
have also shown that inhibiting both these monoamines is
more effective than inhibiting just serotonin alone [49], and
in this regard, the ability of norepinephrine to inhibit pain
through alpha-2-adrenoceptor activation, whereas serotonin
can enhance pain, is a basis for the need for increased norepi-
nephrine levels as a determinant of efficacy of antidepressant
drugs in pain [49]. Centrally acting analgesics such as duloxe-
tine (an SNRI), have proven its efficacy in a variety of human
chronic pain conditions characterized by central sensitization
(e.g., fibromyalgia [50] and osteoarthritis [4]). It remains
unclear whether these clinical effects can be reinforced by
using some of the other treatment strategies discussed here,
which have the potential of ‘treating’ central sensitization in
those with chronic pain. The mechanism of analgesic action
of TCAs is probably related to their neurohormonal
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dual-reuptake inhibition, with greater norepinephrine impact.
There is also some evidence that TCAs potentiate the
endogenous opioid system [51].

2.3 Opioids
Opioid peptides are derived from different precursors: proopio-
melanocortin, prodynorphin, and proenkephalin [52]. Enkepha-
lins, dynorphins, and b-endorphins are the main groups of
opioid peptides derived from these precursor proteins, respec-
tively [52]. Opioids target opioid receptors (µ1, µ2, d1, d2,
k1, k2, and k3-opioid receptors), with the µ-opioid recep-
tors as the most significant. Endogenous opioid peptide-
containing neurons are located in a wide variety of CNS
regions involved in pain processing: in lamina II, III, VIII
and IX of the dorsal horn (i.e., presynaptic Ad- and C-fibres,
postsynaptically on interneurons and projection neurons), the
thalamus, periaqueductal gray, limbic system and several
regions of the cortex [39,52]. Activation of µ-opioid receptors
has inhibitory effects, including presynaptic inhibition of pri-
mary nociceptive afferents and postsynaptic inhibition of pro-
jecting neurons [39]. Various opioids are available for clinical
use: codeine, dextropropoxyphene, tramadol (serving as a reup-
take inhibitor of serotonin and norepinephrine in addition to
its opioid effects), buprenorphine, morphine, methadone,
fentanyl and hydromorphone, among others.
Decreased GABA-neurotransmission appears to be an impor-

tant component of central sensitization [18]. GABA-agonists like
pregabalin are designed to stimulate GABA-neurotransmission,
and hence theoretically facilitate opioidergic nociceptive inhibi-
tory mechanisms. The rostral ventromedial medulla, an impor-
tant brainstem centre for controlling the balance between
nociceptive inhibition and nociceptive facilitation, contains
bothON cells (involved in descending facilitation of nociceptive
information) andOFF cells (involved in descending inhibition).
Morphine is typically referred to as an opioid analgesic because it
excites OFF cells (µ-opioid agonist) and suppresses ON cells
(d-opioid agonist) [53]. It causes neuronal inhibition either by
blocking the release of neurotransmitters or by hyperpolarization
of the cell via alterations in potassium and calcium channels [10].
Morphine produces analgesia in animals at least in part by stim-
ulation of GABA-neurotransmission, including stimulation of
GABA-A receptors [18]. Hence, morphine holds the capacity to
specifically target mechanisms known to be crucial to the patho-
physiology of central sensitization. Exogenous opioids such as
morphine do not only target pain mechanisms, they have signif-
icant effects on human immune function as well [54]. This is in
line with our current understanding of the integrated role of
the immune system in the human body, including its interac-
tions with the CNS and central pain mechanisms [19,20,21,22].
The immune system not only contributes to pain sensitivity, it
also modulates opioid tolerance in humans [54].
Whether these drugs provide considerable benefits in terms

of pain reduction and improved function to balance the
risks associated with their use is unclear. Of particular
importance to clinicians treating chronic musculoskeletal

pain is opioid-induced hyperalgesia, the activation of
pronociceptive pathways by exogenous opioids that results
in central sensitization to pain [55]. This phenomenon
results in an increase in pain sensitivity and can potentially
exacerbate pre-existing pain [55]. The mechanisms and signal
transduction pathways that mediate opioid-induced hyperal-
gesia include activation of NMDA-receptors and protein
kinase C, activation of facilitatory supraspinal loops, upregu-
lation of spinal dynorphin and apoptosis of spinal dorsal
horn [56]. Opioids also have powerful positive effects on the
reward and reinforcing circuits of the brain that might lead
to continued drug use, even if there is no abuse or misuse [55].

There is a growing recognition that selected patients with
chronic non-cancer-related pain can be given opioid drugs
for prolonged periods without overt evidence of tolerance
and without intolerable toxicity [57]. Many patients function
better with these drugs. These observations have led to the
development of consensus statements in support of cautious
opioid use in carefully selected and well-monitored patients.
These consensus statements have now been published by the
American Pain Society, American Academy of Pain Medicine,
American Society of Addiction Medicine, and the Canadian
Pain Society [57].

2.4 N-methyl-D-aspartate receptor blockers
The N-methyl-D-aspartate (NMDA) receptor in the dorsal
horn of the spinal cord has been demonstrated to play a role
in the development of central sensitization and, separately,
in the mechanisms underlying opioid analgesia and tolerance.
These findings are driving new drug development and clinical
studies of commercially available drugs, such as ketamine or
dextromethorphan, that block this receptor. NMDA-receptor
antagonists have been demonstrated to be analgesic in some
settings, and the commercially available antagonists are being
explored for clinical use [58]. This class of drug may offer a
new and reasonably well-tolerated single therapy for chronic
administration. However, the clinically available NMDA-
receptor channel blockers have, at best, a narrow therapeutic
window. Blockade of excitation with NMDA-receptor
antagonists may limit or reduce the spread of hyperalgesia
and allodynia due to sensitization and in consequence,
NMDA-receptor antagonists may be seen preferentially as
antihyperalgesic or anti-allodynic agents rather than as tradi-
tional analgesics [59]. Despite the presence of firm clinical evi-
dence in support of the effectiveness of agents acting as
antagonists at the NMDA-receptor complex, especially keta-
mine, and although some individual patients do get good
pain relief in nerve-injury situations, the majority cannot
achieve complete pain control. This is partly because adequate
dosing is prevented by the narrow therapeutic window of the
existing drugs, largely because of the widespread distribution
and functionality of NMDA-receptors, meaning that the
introduction of an antagonist will not only target the pathol-
ogy but will also disrupt normal essential NMDA signaling
within the CNS. This explains why such drugs are commonly
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associated with numerous unavoidable and unacceptable side-
effects. Ultimately, the broad use of NMDA-antagonists in
the treatment of chronic pain will depend on strategies that
increase their therapeutic window over existing drugs [41].

The therapeutic ratio therefore needs to be improved by
the use of low-dose NMDA blockers in combination with
another agent, more selective systemic NMDA-receptor
antagonists (such as the modulation of other binding sites
within the NMDA--receptor complex), or selective adminis-
tration of NMDA-receptor antagonists [41,60]. An emerging
principle in new pharmacological strategies for treating
pain is to combine existing analgesic agents with non-toxic
NMDA-receptor antagonists to enhance their analgesic
effects, extend their duration and prevent tolerance to their
repeated administration.

Of relevance is the crucial role that NMDA-receptor activa-
tion plays in tolerance to the analgesic effects of narcotics,
dependence on narcotics and narcotic-induced thermal hyper-
algesia (for a review, see [62]). Combining NMDA-receptor
antagonists with opioid and even non-opioid analgesics may
be a way of increasing their analgesic potency in addition to
preventing tolerance and dependence. Preclinical animal stud-
ies demonstrate the practicality of the combined administra-
tion of non-toxic NMDA-receptor antagonists with various
types of analgesic drugs [60].

Interestingly, recent advances in the understanding of the
pharmacology of ketamine and related compounds have dem-
onstrated that ketamine within the CNS is bound with greater
affinity to agonist sites on high-affinity dopamine D2 receptors
than to NMDA-receptors [62]. Findings would therefore appear
to result more from their activity as a dopamine D2-receptor
agonist than as an NMDA-receptor antagonist [63].

2.5 Calcium channel alpha(2)delta ligands
The molecular mechanisms of sensitization that occur in
peripheral nociceptors and the dorsal horns of the spinal
cord are putative targets for context-dependent drugs,
that is, drugs that can discriminate between ‘normal’ and
‘pathological’ pain transmission. Among these, pregabalin
and gabapentin bind to the alpha(2)delta (a2d) subunit of
voltage-sensitive Ca2+ channels, which sustain the enhanced
release of pain transmitters at the synapses between primary
afferent fibres and second-order sensory neurons under condi-
tions of chronic pain. Gabapentin and pregabalin both bind
to the a2d subunit of voltage-gated calcium channels, decreas-
ing the release of glutamate, norepinephrine and substance
P [64]. Pregabalin in particular represents a remarkable exam-
ple of a context-dependent analgesic drug that acts at a critical
step of nociceptive sensitization. Preclinical and clinical data
suggest that pregabalin is more than a structural and func-
tional analogue of gabapentin and may be effective in the
treatment of nociceptive inflammatory pain that is resistant
to gabapentin [65].

Gabapentin, which is readily transported into cells, is the
first ligand that has been shown to modulate Ca2+ channel

current. There is also in vitro evidence that gabapentin alters
activity of glutamic acid decarboxylase. Such an effect may
increase synthesis of GABA glutamate in neurological tissue.
Because GABA receptors have been shown to mediate pre-
and postsynaptic inhibition in sensory afferent fibres, it fol-
lows that gabapentin may be effective in antagonizing at least
some painful sensations.

Pregabalin, a second-generation anticonvulsant, is approved
for the treatment of neuropathic pain associated with diabetic
peripheral neuropathy and postherpetic neuralgia (and for
adjunctive treatment of partial-onset seizures). Decreased
GABA-neurotransmission appears to be an important compo-
nent of central sensitization [18]. GABA-agonists like pregabalin
are designed to stimulate GABA-neurotransmission, and hence
theoretically facilitate opioidergic nociceptive inhibitory
mechanisms. Pregabalin binds to a2d subunit of voltage-gated
calcium channels, and it reduces Ca2+ influx during depolariza-
tion and reduces the release of glutamate, noradrenaline and
substance P [51].

2.6 Tramadol
Tramadol is a centrally acting drug that induces antinocicep-
tion in animals and analgesia in humans. It is a novel analgesic
agent that has some activity at µ-receptors, although the bind-
ing affinity for brain opioid receptors seems to be low [51,66].
Tramadol inhibits the reuptake of serotonin and of norepi-
nephrine [51], and is interesting because it has non-opioid and
opioid actions that can be attributed to the two isomers found
in the racemic mixture [67]. Bianchi and Panerai [66] have dem-
onstrated that tramadol is able to prevent and reverse hyperal-
gesic behavior without altering physiological nociception in
rats. In the search for drugs that act specifically on central sen-
sitization, Bianchi and Panerai [66] feel that tramadol deserves
attention as an antihypersensitivity agent.

3. Transcranial magnetic stimulation

Repetitive transcranial magnetic stimulation is a safe, non-
invasive technique for stimulating the cerebral cortex. The
short-term analgesic effects of repetitive transcranial magnetic
stimulation of the motor cortex or dorsolateral prefrontal cor-
tex have been shown in a series of human studies using various
chronic pain populations (reviewed in [68-70]) and including
disorders characterized by central sensitization like fibromyal-
gia [71]. Repetitive transcranial magnetic stimulation is more
effective in suppressing centrally than peripherally originated
pain states [70]. However, discussion remains regarding the
precise mechanism of action, and the clinical utility of the
technique is limited by practical obstacles.

Repetitive transcranial magnetic stimulation of the
motor cortex or dorsolateral prefrontal cortex in humans may
specifically target some of the mechanisms involved in central
sensitization. Indeed, repetitive transcranial magnetic stimula-
tion directly targets the various structures of the human
CNS involved in pain processing [68,69]. Focal somatotopical
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stimulation of the motor cortex addresses the sensory-
discriminative aspects of pain [69]. In addition, repetitive trans-
cranial magnetic stimulation reverses the inhibited intracortical
motor circuitry, which might restore descending nociceptive
inhibition [69,72]. It might restore normal blood flow (i.e., activ-
ity) in various brain regions involved in the brain neuromatrix,
including the brainstem, thalamus and the anterior cingulate
cortex, which in turn restores descending nociceptive inhibition
and alters the cognitive emotional component of pain [68,69,72].
However, because the diffuse analgesic effects of repetitive
transcranial magnetic stimulation did not change the nocicep-
tive flexion reflex in healthy human volunteers; Nahmias
et al. [73] concluded that the analgesic effects might not depend
on the activation of descending inhibitory systems.
Importantly, practical obstacles preclude the widespread

clinical use of repetitive transcranial magnetic stimulation
for those with chronic pain due to central sensitization. The
analgesic effects observed in humans are too short-lived (i.e.,
varying between less than 1 week to 3 weeks) [69,72,75] and
the availability of the equipment is limited to few specialized
centers. These practical issues might by overcome by using
chronic motor cortex stimulation with surgically implanted
epidural electrodes. In fact, repetitive transcranial magnetic
stimulation was first applied to provide a non-invasive alter-
native for chronic motor cortex stimulation with surgically
implanted epidural electrodes, or at least to provide a non-
invasive strategy capable of predicting the outcome of the
implanted procedure [68,69]. Chronic motor cortex stimulation
with surgically implanted epidural electrodes largely targets
the same mechanisms as repetitive transcranial magnetic stim-
ulation of the motor cortex or dorsolateral prefrontal cortex.
The discussion of neurosurgery in the treatment of central
sensitization is well beyond the scope of the present article.

4. Rehabilitation potentially targeting central
sensitization

In addition to pharmacotherapy and transcranial magnetic
stimulation, rehabilitation provides opportunities for treating
central sensitization in those with chronic unexplained
pain. Rehabilitation targeting central sensitization is likely to
benefit from advances in (neuro)technology.

4.1 Manual therapy
Originally, manual therapy aimed at exerting peripheral effects
like increasing joint range of motion, decreasing peripheral
muscle tension and relieving local pain. Besides peripheral
effects, manual therapy also produces central (analgesic)
effects [76-78]. Manual joint mobilization exerts temporally
(30 -- 45 min) activation of descending anti-nociceptive
pathways [42,79-81]. This was shown in animal studies [42,80,81].
A study in humans with osteoarthritis, a chronic pain disorder
characterized by central sensitization, provides preliminary
evidence that manual joint mobilization provides widespread
analgesia [79]. Likewise, a pilot randomized, controlled clinical

trial concluded that lateral glide manual therapy applied to
the cervical spine may be effective in reducing sensory hyperex-
citability in patients with chronic whiplash, evidenced by
improvements in the nociceptive flexion reflex [38]. However,
the short-term nature of the central analgesic effects of manual
therapy limits is clinical utility as a treatment strategy for
desensitizing the CNS. This might explain the inconclusive
findings in relation to the effectiveness of manual therapy for
various chronic ‘unexplained’ pain disorders like fibromyalgia,
tension-type headache, osteoarthritis, myofascial pain syn-
drome and temporomandibular disorders [82]. It is tempting
to speculate that repeated manual therapy treatment sessions
result in long-term activation of descending anti-nociceptive
pathways; future research should examine whether manual
therapy has the capacity of doing so. In the absence of such evi-
dence, manual therapy used in patients with chronic pain due
to central sensitization should be adopted to the process of cen-
tral sensitization. If it is not, manual therapy may serve as a
peripheral source of nociceptive input to the CNS and thus
will sustain the process of central sensitization [2,8]. Guidelines
for the use of manual therapy in those with chronic pain due
to central sensitization are presented elsewhere [2,8].

4.2 Virtual reality
Virtual reality provides a realistic, computer-generated environ-
ment. The user, in this case the patient suffering from chronic
unexplained pain with central sensitization, is able to interact
with that environment. For this purpose, a high-speed micro-
processing computer and specialized software generates various
sensory modalities including visual, auditory, tactile and
motion-tracking. Virtual reality has been suggested as a desensi-
tization therapy [83]. There is evidence to support the analgesic
effects of virtual reality in humans with chronic pain [84,85] but
the precisemechanism of action remains to be established. There
is some (expert) agreement that virtual reality provides strong
distraction [83]. According to this theory, virtual reality distracts
the user’s conscious attention away from simultaneous nocicep-
tive input by replacing it withmore pleasant sensory input [83]. If
this is the case, then descending nociceptive inhibitory pathways
might be activated during application of virtual reality, explain-
ing its analgesic effect [83]. In line with this view, it is hypothe-
sized that virtual reality is most effective in hypervigilant
chronic pain sufferers. At present, the number of studies in
humans with chronic unexplained pain is scarce; limited evi-
dence (level 2a) supports the effectiveness of virtual reality in
patients with chronic pain [86]. In addition to its analgesic effect,
virtual reality provides opportunities for treating the distorted
body image, as typically seen in patients with chronic pain due
to central sensitization [87-91]. Indeed, virtual realitymight enable
motor relearning in those with chronic unexplained pain.

4.3 Improving stress tolerance and neurofeedback

training
The hyperexcitability of the somatosensory system in people
with chronic pain is likely to be related to the stress response
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system (i.e., the hypothalamic--pituitary--adrenal axis and the
autonomic nervous system). Animal studies have demonstrated
that the stress response system is capable of influencing pain
processing through various pathways [47,18,92-94], including
the dorsal horn glucocorticoid receptors (receptors having
pain inhibitory capacity) [94]. Indeed, stress triggers a switch
in second-messenger signaling for pronociceptive immune
mediators in primary afferent nociceptors, possibly explaining
generalized pain and stress-induced symptom flares/exacerba-
tions as typically seen in those with chronic pain due to central
sensitization [92]. In addition, stress activates the dorsomedial
nucleus of the hypothalamus and subsequent activation of
ON-cells plus suppression of OFF-cells [93]. Together, these
CNS changes result in stress-induced hyperalgesia (augmented
nociceptive facilitation and suppressed nociceptive inhibi-
tion) [93]. Likewise, chronic stress (repeated forced swimming)
has detrimental effects on GABA-neurotransmission both at
the spinal and supraspinal level, resulting in generalized hyper-
algesia and disinhibition of the hypothalamic--pituitary--adrenal
axis [18]. Hence, stress-management programs target the
cognitive emotional component of central sensitization. Neuro-
and biofeedback training using commercially available devices
provides opportunities for improving stress management
programs [95,96].

Stress management is likely to address the cognitive and
emotional aspects of central sensitization. ‘Cognitive emo-
tional sensitization’ [97] refers to the capacity of forebrain cen-
ters of exerting powerful influences on various nuclei of the
brainstem, including the nuclei identified as the origin of
the descending facilitatory pathways [98]. The activity in
descending pathways is not constant but can be modulated,
for example by the level of vigilance, catastrophizing, depres-
sion, attention and stress [99,100]. Hence, part of the effects
of cognitive behaviural therapy for chronic pain patients
may be explained by its action on cognitive emotional sensiti-
zation. Improving perpetuating cognitive and emotional fac-
tors in patients with chronic pain due to central sensitization
might lead to desentization, as has been shown in patients
with fibromyalgia [101].

4.4 Transcutaneous electrical nerve stimulation
Transcutaneous electric nerve stimulation (TENS) is frequently
used in patients with chronic pain. TENS activates large-
diameter afferent fibers, which in turn activate descend-
ing nociceptive inhibitory mechanisms by activating the
ventrolateral periaqueductal gray and the rostral ventromedial
medulla [102,103]. Indeed, pharmacological blockade of activity
in the ventrolateral periaqueductal gray and the rostral ventrome-
dial medulla inhibits the analgesic effects of TENS in ani-
mals [102,103]. TENS primarily activates (poly)segmental
inhibitory circuits [104] by activating spinal µ- and d-opioid
receptors [105] and spinal GABA(A) receptors [106], in addition
to triggering GABA release [106]. In summary, TENS targets
mechanisms known to be involved in central sensitization.
Although modest treatment responses to TENS have been

reported in humans with fibromyalgia [107,108], widespread and
poorly localized chronic pain states are less likely to be suitable
for treatment by TENS [104].

4.5 Cranial electrotherapy stimulation
Cranial electrotherapy stimulation is a recognized category for
medical devices usingmicrocurrent levels of electrical stimulation
applied across the head via transcutaneous electrodes. Its effects
are thought to result from a direct action on the brain at the level
of the limbic system, the hypothalamus and the periaqueductal
gray matter [109]. Hence, it intends to activate descending inhib-
itory pathways from the medial brainstem to the dorsal horn of
the spinal cord [109], although direct evidence in support of this
is currently lacking. Limited data in support of its clinical effec-
tiveness in those with chronic pain have been provided [110-113].
These studies include patient populations like fibromyalgia that
are characterized by central sensitization. Despite the fact that
many (review) papers on cranial electrotherapy stimulation are
written by authors affiliated to companies manufacturing cranial
electrotherapy devices, given its intended action, it potentially
treats central sensitization in people with chronic pain.

5. Conclusion

An overview of the treatment options for desensitizing the
CNS in patients with chronic unexplained pain and central
sensitization has been provided. It is concluded that acetamin-
ophen, serotonin-reuptake inhibitor drugs, selective and
balanced serototin- and norepinephrine-reuptake inhibitor
drugs, the serotonin precursor tryptophan, opioids, NMDA-
receptor antagonists, calcium channel a2d ligands, transcra-
nial magnetic stimulation, TENS, manual therapy and stress
management each target central pain processing mechanisms
in animals that, theoretically, desensitize the CNS in humans.
However, little is known about the effect of pharmacotherapy
and other treatment strategies on the mechanism of central
sensitization in humans. The present overview therefore
addressed pharmacological and non-pharmacological treat-
ments with established clinical effectiveness in a variety of
‘unexplained’ chronic pain disorders known to be character-
ized by central sensitization. Still, it should be noted that vig-
orous uptake of medication usage in the patients described
could do more harm than good. Drugs are never without
side effects and this should be acknowledged by clinicians.

From the overview provided, it becomes clear that many of
these treatment options target similar mechanisms. For exam-
ple, morphine, gabapentin and TENS enhance GABA neuro-
transmission in the CNS. The majority of the treatment
options discussed here aim at improving and/or activating
descending nociceptive processing together with decreasing
descending nociceptive facilitation, rather than targeting
peripheral sources of nociceptive input. In the absence of
such peripheral sources of nociceptive input, as is typically
the case in patients with ‘unexplained’ chronic pain, a
treatment targeting top-down mechanisms is required.
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Future work should examine the mechanism, explaining
the clinical effects of the treatment options we have for
dealing with central sensitization in those with chronic
unexplained pain. More specifically, examining the effects
of these treatment strategies on central sensitization should
be a priority for future pain studies. This can be accom-
plished by including outcome measures like temporal
summation [14], spatial summation (or diffuse noxious inhib-
itory control) [6] or the nociceptive flexion reflex thresh-
old [38] in conjunction with clinical outcomes (e.g., pain
severity, pain variability) in future randomized (cross-over)
clinical trials.

6. Expert opinion on combining
pharmacotherapy with other treatment
options for central sensitization

It is unlikely that a single drug or non-pharmacological
treatment will be identified as being capable of treating
such a complex mechanism as central sensitization. Indeed,
central sensitization entails various interrelated processes in
the CNS, including malfunctioning of descending anti-
nociceptive mechanisms [6], increased activity of pain
facilitatory pathway, an overactive pain neuromatrix [16]

and long-term potentiation [17]. Heterogeneity exists in
response to pharmacotherapy in those with chronic unex-
plained pain, including non-responders [10]. At the individ-
ual level, most people respond to two or more drugs,
suggesting that several pain mechanisms have to be targeted
in clinical practice [10]. Thus, instead of using a single drug,
it seems more likely that the combination of different strat-
egies, each targeting a somewhat different ‘desensitizing’
mechanism, will prove beneficial. The exact content of
such combinations is likely to differ across patient groups
(e.g., patients with osteoarthritis and fibromyalgia, two
very different disorders characterized by central sensitiza-
tion, will probably benefit from a different combination
of treatments, even though some treatment components
may overlap).
Little work has been done to examine the combined

effects of treatment strategies aiming at desensitiz-
ing the CNS. Animal studies have demonstrated that
high-frequency TENS in combination with morphine

results in a similar reduction in mechanical hyperalgesia as
high-frequency TENS alone [74]. The author suggested that
a lower dose of morphine could be used in combination
with TENS to decrease the side effects of systemic morphine
and achieve the same degree of analgesia [74], but it remains
unclear whether this also applies to humans. A randomized,
controlled clinical trial revealed that repetitive trans-
cranial magnetic stimulation is efficacious as an add-on to
pharmacological and conservative therapy in patients with
complex regional pain syndrome type I [75]. The combined
standardized pharmacological and conservative treatment
was based on the best evidence available (naproxen 250 mg
b.i.d., amitriptyline 50 mg q.d., and carbamazepine
200 mg b.i.d.) and a physical therapy program (kinesiother-
apy plus low-impact aerobic relaxation and stretching
exercises) [75].

To provide a comprehensive treatment for ‘unexplained’
chronic pain disorders characterized by central sensitization,
combining the best evidence available with treatment
modalities known to target central sensitization is advo-
cated. For example, central sensitization contributes to the
complex clinical picture of chronic whiplash-associated dis-
orders (reviewed in [2]). Little evidence in support of any
treatment strategy for patients with chronic whiplash has
been provided. Combining centrally acting analgesics (e.g.,
duloxetine or any other SNRI) with conservative interven-
tions (i.e., manual therapy and stress management) to target
central sensitization in those with chronic whiplash associ-
ated disorders is suggested. Whether cranial electrotherapy
stimulation and/or virtual reality are efficacious as add-
ons to centrally acting pharmacotherapy in these patients
remains to be determined. These are important questions
for further work in this area. In addition to causation and
effectiveness studies, dose--response studies might be of
significant importance.
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